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ABSTRACT

We present a new Kubernetes architecture that leverages in-
network caching to accelerate one of Kubernetes’ core com-
ponents, its key-value store. We also identify performance
limitations of previous in-network caching platforms and
propose a new platform that demonstrates better throughput
and scalability by utilising a different replication method.

1 INTRODUCTION

Kubernetes has been the orchestration framework that drove
the transition to the era of microservices for many system
administrators [2]. By utilising a set of virtualisation tools,
it provided enhanced management and a hardware-agnostic
approach towards service deployment. It constitutes a trust-
worthy and extensible framework that enables service de-
ployment in diverse computing environments.

One of Kubernetes’ integral components is etcd [7], which
maintains a consistent Key-Value Store (KVS) and provides
coordination services to other control-plane components,
including the API server and the Container Network Inter-
face (CNI) (responsible for networking of the deployed ser-
vices). Etcd uses a quorum approach to maintain consistency,
and more specifically the Raft protocol. A trade-off to this
algorithm is the lack of horizontal scalability [12, 18]. For
example, the latency to a write query can be up to 80ms for
a cluster of 9 nodes and up to 160ms for a cluster of 21 nodes
[11].

Data plane programmability, through programming tools
like P4 and hardware innovations like the Tofino ASIC, ac-
celerated the performance of various services, including
KVS [5, 8, 15]. A KVS can be completely deployed in Pro-
grammable Data Plane (PDP) and accommodate queries in
line rate at sub-Round Trip Time [13]. This has been shown
to improve throughput and latency up to orders of magni-
tude. A write query can be completed in the order of ys, an
important improvement compared to the aforementioned
performance of etcd. In this work, we examine the integra-
tion of in-network KV caching as a way to accelerate the
performance of etcd and Kubernetes.

Our contributions: we identify the shortcomings of pre-
vious state-of-the-art (SotA) in-network replication frame-
works; we implement a different replication mechanism that
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displays better scalability and reduced latency while main-
taining strong consistency; we suggest the addition of Kuber-
netes components that work alongside the previous ones and
decide which KV pairs should be placed in PDP based on real-
time metrics; we contribute to the vision of an end-to-end
programmable platform that utilises in-network computing
and virtualisation to accelerate performance.

2 DESIGN

Our design can be broken down in two main domains: the
PDP components that utilise P4 to enable in-network repli-
cation; and the Kubernetes framework that was extended
to support offloading KV pairs to PDP based on real-time
metrics.

By examining NetChain [13], the fastest in-network repli-
cation platform, we identified aspects that make its scalabil-
ity bottleneck to the performance of a single node. By using
Chain Replication as the underlying replication mechanism,
the last node in a chain of switches is treated as reference for
consistency [18]. This limits the platform’s performance to
the response rate of this node and requires full chain traver-
sals to retrieve a reply, generating an unnecessary amount
of traffic [16]. Moreover, the used packet structure requires
all chain node IPs to be included in the packets, further in-
creasing packet processing times alongside traffic.

To alleviate these design limitations, we implemented a
different replication method — CRAQ [16]. With CRAQ, each
node can reply to a read query as long as the KV pair re-
quested is up to date (clean). This can offer great performance
and scalability improvements over Chain Replication. Previ-
ous work has validated our experiments, which show that the
majority of queries generated from Kubernetes to etcd are
read queries. Approximately a third of the queries are writes.
Therefore, this method appears promising when considering
Kubernetes workloads.

We implemented CRAQ in P4 by using the PSA architec-
ture to define Match-Action pairs based on header fields [9].
An overview of the framework’s design, named NetCRAQ,
can be seen on the right side of Figure 1 (all red blocks de-
fine our new suggested components, green blocks represent
etcd components, yellow represents Calico CNI [17], and
blue is used for Kubernetes). The packet header defines the
type of operation (read, write, delete). We then proceed by
identifying the state of the KV pair — clean or dirty (write
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Figure 1: Design overview.
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not yet fully committed). KV pairs are stored in fast-access
TCAM registers. Then, a reply is generated or the clean value
is fetched from the last chain node. Otherwise, the write is
locally committed and propagated to other chain nodes. A
delete query works in the same manner but commits a null
value.

Two Kubernetes components have been extended to sup-
port the integration of PDP: etcd and CNI [3]. A monitor-
ing component has been added to etcd in order to identify
most commonly accessed KV pairs. It uses the integrated
Promitheus endpoint to read metrics [1]. The most frequent
KV pairs are selected as candidates for deployment in PDP.
Monitoring is also in place for the values already existing
in PDP, which have counters for access frequency. These
statistics are obtained through P4Runtime which is executed
as part of the CNI [10]. Through the NetCRAQ placement
scheduler, also located within the CNI, these metrics are
compared and a decision on which values will be transferred
to PDP is made. The most frequently read values are placed
in data plane.

3 EVALUATION

Both NetCRAQ and NetChain have been implemented in
P4 and tested using BMv2 with Mininet and P4-utils API
(4, 6, 14].

We evaluate the throughput of both platforms based on
the maximum attainable rate at which they can provide re-
sponses to queries. The measurements are in Queries Per
Second (QPS). In figure 2, we test NetCRAQ’s ability to
provide responses to read queries of a clean version ver-
sus NetChain’s behaviour for the same queries. We monitor
the throughput each node is able to achieve given the dis-
tance it has from the reference node. NetCRAQ’s throughput
appears unaffected by distance when the queried object is
clean. This effectively enables every participating node to
reply to a query, increasing scalability significantly. The re-
duction of required hops benefit NetCRAQ’s performance:
4.08x higher throughput for queries directed to the head of
the chain. In case of dirty objects, throughput is still higher
than NetChain with the difference being attributed to the
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Figure 2: Max read QPS vs distance from tail.
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Figure 3: Performance under mixed read/write work-
loads.

smaller packet size used by NetCRAQ and its ingress control
logic that minimises parsing,.

We evaluate both platforms under realistic workloads con-
taining a mix of reads and writes. The results are shown in
Figure 3. Starting from a read-only workload, we gradually
increase the percentage of writes with a step of 25%. The per-
formance of the platforms is determined by their attainable
response rate. NetCRAQ achieves more than double the read
throughput for all write percentages. The efficiency it shows
on read queries enables higher throughput regardless of the
write percentage. Adequate register cells need to be budgeted
to maintain all dirty versions before they can be committed
in the chain. This is depicted by the increasing amount of
dirty commits observed in the right y axis of Figure 3.

4 FUTURE STEPS

Our future steps include transferring our implementations
to the Tofino ASIC in order to evaluate performance dif-
ferences in hardware. Because the obtained performance
improvements stem from optimisations not tied to hardware,
i.e., the reduced number of hops and reduced traffic/parsing,
we expect the results of our emulation environment to be
indicative of real-world behaviour. We also want to conclude
work in Kubernetes components that redirect queries to PDP
and evaluate the performance difference between the default
setup and a setup that utilises in-network replication.
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