
Accelerating Kubernetes with In-network 

Caching
Stefanos Sagkriotis1, Dimitrios Pezaros2

School of Computing Science, University of Glasgow, UK

Background
• Kubernetes relies on etcd to obtain a consistent Key-Value Store

(KVS) used to coordinate services and control-plane
components. Etcd is based on Raft, a quorum-based platform
that lacks horizontal scalability [1][3]. For example, write
latency in etcd can go from 80ms for a cluster of 9 nodes to
160ms for a cluster of 21 nodes. [2]

• However, a KVS deployed in Tofino ASIC using P4 can provide
sub-Round Trip Time responses in μs latency, as shown by
NetChain [3]. We attempt to leverage the performance
improvements to accelerate Kubernetes operations and benefit
the platform’s scalability.

• Kubernetes generates read-mostly workloads during pod
scaling. Only a third of the generated queries are writes.

Contributions
1. Identification of shortcoming in previous state-of-the-art

(SotA) in-network replication frameworks.
2. Implementation of a replication mechanism that promotes

scalability and reduced latency while maintaining
consistency.

3. Proposal of a Kubernetes design that utilises in-network
caching to enhance scalability, provide higher throughput
and reduced latency. Evaluation

NetCRAQ implemented using P4. Tested using Mininet, Bmv2, P4utils.

Fig. 3: Read throughput vs Distance from tail

Fig. 4: Read throughput with mixed read/writes

Overview

Kubernetes component

Etcd component

CNI component

NetCRAQ component

Fig. 2: Overview of proposed design

Design
Programmable Data Plane (PDP)
• Scalability
- Is previous SotA scalable? – Due to the Chain Replication method, scalability 

is bottlenecked to the reply rate of the reference node (tail).
- Can we do better? – CRAQ allows each node to generate replies if a Key-

Value (KV) pair is clean, i.e., no pending commits.

• Packet parsing
- Can be extensive due to forwarding to reference node (tail). CRAQ minimises 

this by forwarding only dirty queries. 
- A minimal packet header is utilised with few overhead fields: 20 bytes (16 

bytes for value) vs 72 bytes for NetChain.
• Control plane
- Manages all chain-related information: forwarding rules, participating 

nodes, roles (head, tail, replica). The client can be chain-agnostic.
- Removes information from packet headers, shortening parsing times.

Kubernetes
• API requests monitoring
- Etcd monitoring by scraping Prometheus. 
• Data plane measurements
- P4Runtime used to identify hot KV pairs through P4 counters.
• Decision making based on traffic statistics

- Most popular KV pairs to be placed in PDP provided there is enough 
space

Fig. 1: Read queries in Chain Replication vs CRAQ

References
[1] Ricardo Jiménez-Peris, M. Patiño Martínez, Gustavo Alonso, and Bettina Kemme. 2003. Are Quorums an Alternative for
Data Replication? ACM Trans. Database Syst. 28, 3 (sep 2003), 257–294. https://doi.org/10.1145/937598.937601
[2] Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Kubernetes for the Edge. In Proceedings of the
4th International Workshop on Edge Systems, Analytics and Networking (Online, United Kingdom) (EdgeSys ’21). Association
for Computing Machinery, New York, NY, USA, 7–12. https://doi.org/10.1145/3434770.3459730
[3] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. 2018.
NetChain: Scale-Free Sub-RTT Coordination. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35–49. https://www.usenix.org/conference/nsdi18/presentation/jin
[4] Robbert van Renesse and B. Schneider. 2004. Chain Replication for Supporting High Throughput and Availability. In 6th
Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco, California, USA, December 6-8, 2004,
Eric A. Brewer and Peter Chen (Eds.). USENIX Association, 91–104. http://www.usenix.org/events/osdi04/tech/renesse.html

Future Steps
1. Transfer implementation to the Tofino ASIC and evaluate

performance differences in hardware. Optimisations stem from
reduced number of hops and parsing therefore we expect
emulation results to be indicative.

2. Conclude work on Kubernetes components that redirect queries to
PDP and evaluate the performance difference between the default
setup and a setup that utilises in-network replication.

3. Examine alternative use cases and evaluate their performance.

1s.sagkriotis.1@research.gla.ac.uk, 2dimitrios.pezaros@glasgow.ac.uk

https://doi.org/10.1145/3434770.3459730
https://www.usenix.org/conference/nsdi18/presentation/jin

