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ABSTRACT
Wepresent a newKubernetes architecture that leverages in-network
caching to accelerate one of Kubernetes’ core components, its key-
value store. We also identify performance limitations of previous
in-network caching platforms and propose a new platform that
demonstrates better throughput and scalability by utilising a differ-
ent replication method.
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1 INTRODUCTION
Kubernetes has been the orchestration framework that drove the
transition to the era of microservices for many system adminis-
trators [2]. By utilising a set of virtualisation tools, it provided
enhanced management and a hardware-agnostic approach towards
service deployment. It constitutes a trustworthy and extensible
framework that enables service deployment in diverse computing
environments.

One of Kubernetes’ integral components is etcd [7], which main-
tains a consistent Key-Value Store (KVS) and provides coordina-
tion services to other control-plane components, including the API
server and the Container Network Interface (CNI) (responsible for
networking of the deployed services). Etcd uses a quorum approach
to maintain consistency, and more specifically the Raft protocol.
A trade-off to this algorithm is the lack of horizontal scalability
[12, 18]. For example, the latency to a write query can be up to
80ms for a cluster of 9 nodes and up to 160ms for a cluster of 21
nodes [11].

Data plane programmability, through programming tools like
P4 and hardware innovations like the Tofino ASIC, accelerated the
performance of various services, including KVS [5, 8, 15]. A KVS
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can be completely deployed in Programmable Data Plane (PDP)
and accommodate queries in line rate at sub-Round Trip Time [13].
This has been shown to improve throughput and latency up to
orders of magnitude. A write query can be completed in the order
of 𝜇s, an important improvement compared to the aforementioned
performance of etcd. In this work, we examine the integration of
in-network KV caching as a way to accelerate the performance
of etcd and improve Kubernetes’ scalability by allowing higher
throughput of queries and reduced latency.

Our contributions: we identify the shortcomings of previous
state-of-the-art (SotA) in-network replication frameworks; we im-
plement a different replication mechanism that displays better scal-
ability and reduced latency while maintaining strong consistency;
we suggest the addition of Kubernetes components that work along-
side the previous ones and decide which KV pairs should be placed
in PDP based on real-time metrics; we contribute to the vision
of an end-to-end programmable platform that utilises in-network
computing and virtualisation to accelerate performance.

2 DESIGN
Our design can be broken down in two main domains: the PDP
components that utilise P4 to enable in-network replication; and
the Kubernetes framework that was extended to support offloading
KV pairs to PDP based on real-time metrics.

By examining NetChain [13], the fastest in-network replication
platform, we identified aspects that make its scalability bottleneck
to the performance of a single node. By using Chain Replication
as the underlying replication mechanism, the last node in a chain
of switches is treated as reference for consistency [18]. This lim-
its the platform’s performance to the response rate of this node
and requires full chain traversals to retrieve a reply, generating
an unnecessary amount of traffic [16]. Moreover, the used packet
structure requires all chain node IPs to be included in the packets,
further increasing packet processing times alongside traffic.

To alleviate these design limitations, we implemented a different
replication method – CRAQ [16]. With CRAQ, each node can reply
to a read query as long as the KV pair requested is up to date (clean).
This can offer great performance and scalability improvements over
Chain Replication. Previous work has validated our experiments,
which show that the majority of queries generated from Kubernetes
to etcd are read queries. Approximately a third of the queries are
writes. Therefore, this method appears promising when considering
Kubernetes workloads.

We implemented CRAQ in P4 by using the PSA architecture to
define Match-Action pairs based on header fields [9]. An overview
of the framework’s design, named NetCRAQ, can be seen on the
right side of Figure 1 (all red blocks define our new suggested com-
ponents, green blocks represent etcd components, yellow represents
Calico CNI [17], and blue is used for Kubernetes). The packet header
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Figure 1: Design overview.

defines the type of operation (read, write, delete). We then proceed
by identifying the state of the KV pair – clean or dirty (write not
yet fully committed). KV pairs are stored in fast-access TCAM reg-
isters. Then, a reply is generated or the clean value is fetched from
the last chain node. Otherwise, the write is locally committed and
propagated to other chain nodes. A delete query works in the same
manner but commits a null value.

Two Kubernetes components have been extended to support the
integration of PDP: etcd and CNI [3]. A monitoring component has
been added to etcd in order to identify most commonly accessed KV
pairs. It uses the integrated Prometheus endpoint to read metrics
[1]. The most frequent KV pairs are selected as candidates for
deployment in PDP. The number of pairs is decided based on the
available memory of the device and the total size of the candidate
KV pairs. Monitoring is also in place for the values already existing
in PDP, which have counters for access frequency. These statistics
are obtained through P4Runtime which is executed as part of the
CNI [10]. Through the NetCRAQ placement scheduler, also located
within the CNI, these metrics are compared and a decision on which
values will be transferred to PDP is made. The most frequently read
values are placed in data plane.

3 EVALUATION
Both NetCRAQ and NetChain have been implemented in P4 and
tested using BMv2 with Mininet and P4-utils API [4, 6, 14].

We evaluate the throughput of both platforms based on the maxi-
mum attainable rate at which they can provide responses to queries.
The measurements are in Queries Per Second (QPS). In figure 2, we
test NetCRAQ’s ability to provide responses to read queries of a
clean version versus NetChain’s behaviour for the same queries.
We monitor the throughput each node is able to achieve given
the distance it has from the reference node. NetCRAQ’s through-
put appears unaffected by distance when the queried object is
clean. This effectively enables every participating node to reply to a
query, increasing scalability significantly. The reduction of required
hops benefit NetCRAQ’s performance: 4.08× higher throughput
for queries directed to the head of the chain. In case of dirty ob-
jects, throughput is still higher than NetChain with the difference
being attributed to the smaller packet size used by NetCRAQ and
its ingress control logic that minimises parsing.

We evaluate both platforms under realistic workloads, i.e., con-
taining a mix of reads and writes. The results are shown in Figure
3. The queries are directed to the most distant node from the refer-
ence node, placed 3 hops away. Starting from a read-only workload,

Figure 2: Max read QPS vs distance from tail.

Figure 3: Performance under mixed read/write workloads.

we gradually increase the percentage of writes with a step of 25%.
The performance of the platforms is determined by their attain-
able response rate. NetCRAQ achieves more than double the read
throughput for all write percentages. The efficiency it shows on
read queries enables higher throughput regardless of the write per-
centage. Adequate register cells need to be budgeted to maintain
all dirty versions before they can be committed in the chain. This
is depicted by the increasing amount of dirty commits observed in
the right y axis of Figure 3. The size of KV pairs did not impact the
performance for any of the platforms.

4 FUTURE STEPS
Our future steps include transferring our implementations to the
Tofino ASIC in order to evaluate performance differences in hard-
ware. Because the obtained performance improvements stem from
optimisations not tied to hardware, i.e., the reduced number of hops
and reduced traffic/parsing, we expect the results of our emulation
environment to be indicative of real-world behaviour. We also want
to conclude work in Kubernetes components that redirect queries to
PDP and evaluate the performance difference between the default
setup and a setup that utilises in-network replication. Taking into
account that our in-network replication framework can be inte-
grated in other applications, we are willing to examine alternative
use cases and evaluate their performance.
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